下载安卓APP箭头
箭头给我发消息

客服QQ:3315713922

七步走!做出高质量的数据分析项目

作者:匿名     来源: 大数据点击数:612发布时间: 2022-12-16 21:09:59

标签: 数据分析项目

  数据分析项目特别需要仪式感!因为数据分析成果很少能成为白花花的银子,等年底做总结的时候可能大家都忘得差不多了。因此一定要做足仪式。比如项目启动时和合作方一起开个会,开到中午大家一起大圆桌搓一顿。项目结束汇报时专门约上大老板,汇报完合影留念。

  每到年底,都有同学感慨:“忙了一年,感觉都是常规数据报表,连个拿得出手的项目都没有!”那到底高质量的数据分析项目该咋做?

  1.怎样算高质量

  想回答这个问题,得先明确:啥叫“高质量”项目。从本质上看,数据分析是个支撑型岗位,工作质量高不高,主要由被服务的部门决定。如果是在企业里工作的话,主要看管理层/业务部门的评价意见。如果在面试时,则主要由面试HR/用人领导评价。摸清对方的需求,击中对方的痛点才是关键。、

  经常有同学在这里犯迷糊,觉得:用了线性回归模型的(复杂的模型不会)/图表blingbling闪光的/查一个数sql 写了2000行的,才算是“高质量”,忽视了这些玩意对业务到底有没有用,结果自然是闹笑话了。前几天还有个同学急匆匆来问,说他们建了流失用户预测模型,结果运营表示:“你们搞着干啥?预测了我也不知道咋用!”然后项目就黄掉了……这就是典型的闭门造车结果。

  那要怎么弄,才能中业务痛点呢?

  2.找准核心需求

  数据分析对业务,是个“随风潜入夜,润物细无声”的事,往往有数据看得时候大家不觉得很厉害,但是没数据看了,就有人会着急。所以想找到业务的痛点,最好不要强行推销:“我有一个人工智能阿尔法大狗子模型,百测百准,客官您要不要试试!”而是先看,对方部门最关注什么问题,最缺什么数据。

  常见的缺数据的情况有四种:

  基础数据都没有,迫切想看到数

  有数据但不知道怎么解读,干着急

  有数据,有解读,想进一步验证想法

  有数据,有解读,想进一步做预测

  接业务方需求的时候,一定要清晰真实需求。比如“用户画像”,可能上项目时就是嘴上一说,到底是业务不清楚用户现状,还是想基于画像做啥动作,一定要了解清楚。项目开始时不清晰,中间过程也要逐步清晰,不然夯吃夯吃打了一堆标签再被人质疑“你这有啥用!”那就是哑巴吃黄连了……

  3.报表型项目的要点

  报表型项目数量最多,但最容易被数据分析师们忽视,很多新人总嫌弃它技术上不复杂。但实际上,报表型项目是最容易出成绩的,关键在于:做领导们关心的,领导们看得见的。接需求的时候,区分报表使用人,优先把领导们需求做可视化,让领导们直观感受到数据。

  并且,通过报表型项目,可以有效鉴别业务方合作态度。如果业务方态度好,那么可以深入合作。既然已经有了业务监控报表,那么下一步就可以做业务走势异常分析。先记录非业务主动行为产生的异常点,之后再深入分析:

  1).多大幅度变化算异常

  2).是什么因素导致的异常

  3).如何通过数据提前发现异常

  有了这些积累,就可以进一步做自动化异常提醒+问题诊断,让单纯的数据展示更上一层楼,同时能为后续深入分析打好基础。

  4.分析型项目的要点

  在很多人原始印象里,数据分析就应该是拿到一堆数字,然后般若妈咪哄一通分析,告诉业务三句话,让业务多赚18万!因此往往人们对分析型项目期望甚高。但实际上分析型项目特别容易踩雷。对业务不够了解,缺少监控数据,缺少异常分析的经验,都会让问题分析流于表面。做项目时“雷声大、雨点小”是常态。

  因此,分析型项目在报表型项目基础上孵化出来,成功率比较高。如果发现业务方对问题本身监控不足、认识不清,可以退回到报表型项目做起。有了一定积累后,想见效,最好的办法是先共识业务假设,搞清楚业务方到底对啥没信心,对啥有信心。证伪比证真容易,直接验假设更容易出结果。

  如果问题涉及太多难以量化的疑难杂症,还有个解决思路,就是把问题转化成测试型项目。直接看业务方手头有什么解决问题的办法,然后测试那种办法管用。这样也能输出解决问题的方案。

  5.测试型项目的要点

  测试型项目相对容易成功,本质上看,测试也属于“业务没数据,特别想看个数据”的情况。只不过要注意的是,到底要测啥,得事先想清楚了。在测试中最重要的就是:对影响结果的因素有前期了解,测试想测的关键因素,控制其他干扰项。

  因此,一般页面设计测试容易成功,对消费结果测试容易乱套。因为页面设计测试点少,容易出准确、稳定的结果。但影响消费结果的因素太多了在做测试之前没想清楚,很容易因为测试方案之间可比性不高,参与测试群体差异大,关键干扰因素没排除等原因导致结果失灵。

  所以,在做测试前,基础分析工作是很必要的,梳理清楚到底哪些因素会有影响,几套测试方案之间差异点到底有多大,能有效提升项目质量。

  6.预测型项目的要点

  预测型项目的关键在于:确认真实的预测需求,避免盲目赌命式的“我要100%精确”。不但做不到,而且没意义。比如开篇讲的流失用户预测,如果运营是全量投放资源召回流失用户,那把目标改成预测:“哪些人自然会回流”这样就能节省经费。如果运营想获取最大效果,可以把目标改成:“用户预计响应哪种方式的召回”这样可以做多轮推送最大化唤醒用户。总之,先搞清楚运营的计划再下手,比自己闭门造模型管用的多。

  7.仪式感很重要

  数据分析项目特别需要仪式感!因为数据分析成果很少能成为白花花的银子,等年底做总结的时候可能大家都忘得差不多了。因此一定要做足仪式。比如项目启动时和合作方一起开个会,开到中午大家一起大圆桌搓一顿。项目结束汇报时专门约上大老板,汇报完合影留念。项目成果尽量上BI,专门做个《数据资产大屏》摆在老板办公室里,每周滚动一下,又新累积了多少多少数据,助力业务产生多少多少效益。《双十一作战大屏》当然要摆上,而且记得拍照,记录下同事们在大屏前欢呼的盛况……

  具体方法还有很多,大家可以根据自己企业的风格酌情采用,不过核心思路只有一个,就是多团结同事,多搞会议,多上系统,不要默默交个ppt,交个excel,交个csv了事。里子都辛苦做出来了,面子一定要做足!

  写到这,肯定有同学想问:“那么面试的时候怎么体现项目质量高呢?”面试时候思路和实际工作不太一样,因为面试时存在认知差,有可能实际工作业务方很喜欢的东西,对方企业觉得:“这个很一般呀,不过如此吗!”

  来源: 接地气的陈老师

    >>>>>>点击进入大数据专题

赞(8)
踩(0)
分享到:
华为认证网络工程师 HCIE直播课视频教程